Heavy No More™

References:

¹ Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

² Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 101, 133–164.

³ Flora, S. J. S., Mittal, M., & Mehta, A. (2008). Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research, 128(4), 501–523.

⁵ Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury — current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731–1737.

⁶ Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554.

⁷ Houston, M. C. (2011). The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Alternative Therapies in Health & Medicine, 17(2), 64–69.

⁸ Agency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicological Profile for Mercury. U.S. Department of Health and Human Services.

⁹ Needleman, H. L. (2004). Lead poisoning. Annual Review of Medicine, 55, 209–222.

¹⁰ Cecil, K. M., Brubaker, C. J., Adler, C. M., et al. (2008). Decreased brain volume in adults with childhood lead exposure. PLoS Medicine, 5(5), e112.

¹¹ Patrick, L. (2006). Lead toxicity—part II: The role of nutrition in preventing and treating lead toxicity. Alternative Medicine Review, 11(2), 114–127.

¹² Agency for Toxic Substances and Disease Registry (ATSDR). (2020). Toxicological Profile for Lead. U.S. Department of Health and Human Services.

¹³ Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133(1), 1–16.

¹⁴ Naujokas, M. F., Anderson, B., Ahsan, H., et al. (2013). Arsenic metabolism, toxicity, and health effects. Environmental Health Perspectives, 121(3), 295–302.

¹⁵ Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological Profile for Arsenic. U.S. Department of Health and Human Services.

ⁱ⁶ Krewski, D., Yokel, R. A., & Nieboer, E. et al. (2007). Human health risk assessment for aluminum, aluminum oxide & aluminum hydroxide. J. Toxicol. Env. Health B, 10(S1), 1–269.
ⁱ⁷ Exley, C. (2013). Human exposure to aluminum. Environmental Science: Processes & Impacts, 15(10), 1807–1816.
ⁱ⁸ Walton, J. R. (2014). Aluminum & Alzheimer’s disease. Journal of Alzheimer’s Disease, 40(4), 765–838.
ⁱ⁹ ATSDR. (2008). Toxicological Profile for Aluminum. U.S. Dept. HHS.

²⁰ Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium health outcomes. EHP, 118(2), 182–190.
²¹ Bernard, A. (2008). Cadmium & adverse effects on humans. IJMR, 128(4), 557–564.
²² Nordberg, G. F., Nogawa, K., & Nordberg, M. (2018). Cadmium. In Handbook on the Toxicology of Metals (pp. 667–716).
²³ Jarup, L., & Akesson, A. (2009). Cadmium environmental toxicity. Toxicology & Applied Pharmacology, 238(3), 201–208.

²⁴ Rehman, K., Fatima, F., Waheed, I., & Akash, M. (2018). Nickel & human health. J. Env. Sci. Health C, 36(1), 1–13.
²⁵ Sunderman, F. W. (1989). Nickel in human disease. Annals Clin. Lab. Sci., 19(1), 1–10.
²⁶ ATSDR. (2005). Toxicological Profile for Nickel. U.S. Dept. HHS.

²⁷ Mudipalli, A. (2007). Lead, arsenic, cadmium oxidative stress. Toxicology, 231(1), 123–132.
²⁸ Flora, S. J. S. & Pachauri, V. (2010). Chelation in metal intoxication. Int J Environ Res Public Health, 7(7), 2745–2788.
²⁹ Valko, M. et al. (2006). Metals, antioxidants, cancer risk. Chemico-Bio. Interact., 160(1), 1–40.
³⁰ Thévenod, F. (2009). Cadmium + signaling cascades. Toxicol. App. Pharm., 238(3), 221–239.

³¹ Tchounwou, P. B., A. K. Patlolla, & D. J. Sutton. (2012). Heavy metal toxicity and the environment: Molecular mechanisms and maps of interference. EXS, 101, 133–164.

³² Bridges, C. C., & Zalups, R. K. (2017). Mechanisms involved in the transport of mercuric ions in target tissues. Toxicology and Applied Pharmacology, 322, 1–18.

³³ Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium's protective effects against methylmercury toxicity. Toxicology, 278(1), 112–123.

³⁴ Bjorklund, G., et al. (2017). Heavy metals and mitochondrial dysfunction. Journal of Trace Elements in Medicine and Biology, 41, 1–11.

³⁵ Flora, S. J. S., & Gupta, R. (2007). Lead, arsenic, cadmium: Mechanisms of toxicity & cellular disruption. Environmental Toxicology and Pharmacology, 24(3), 263–278.

³⁶ Patrick, L. (2006). Lead toxicity, mineral displacement, and bone retention. Alternative Medicine Review, 11(1), 2–22.

³⁷ Jomova, K., & Valko, M. (2011). Arsenic toxicity, oxidative stress, and carcinogenesis. Journal of Applied Toxicology, 31(2), 95–107.

³⁸ Satarug, S., et al. (2010). Cadmium and its disruption of metabolic and renal function. Toxicology Letters, 198(3), 263–270.

³⁹ Kapaj, S., et al. (2006). Health effects of arsenic exposure: Mechanisms of interference. Journal of Environmental Science and Health, 41(10), 2399–2428.

⁴⁰ Gupta, R., & Flora, S. J. S. (2005). Protective role of antioxidants in cadmium & arsenic toxicity. Toxicology, 215(3), 256–268.

⁴¹ Valko, M., Morris, H., & Cronin, M. (2005). Metals, oxidative stress, and cellular damage. Current Medicinal Chemistry, 12(10), 1161–1208.

⁴² Björklund, G., Tinkov, A. A., Dadar, M., Rahman, M. M., & Skalny, A. V. (2020). Heavy metals, mitochondria, and neurobehavioral symptoms. Environmental Research, 186, 109567.

⁴³ Mutter, J., Curth, A., Naumann, J., Deth, R., & Walach, H. (2010). Does inorganic mercury play a role in Alzheimer’s disease? A systematic review. Journal of Alzheimer's Disease, 22(2), 357–374.

⁴⁴ Krewski, D., et al. (2007). Human health risks of arsenic exposure. Environmental Health Perspectives, 115(7), 1080–1088.

⁴⁵ Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Cadmium: Toxicity and oxidative stress. Toxicology, 283(2–3), 65–79.

⁴⁶ Patrick, L. (2006). Toxic metals and mineral displacement — clinical patterns and system effects. Alternative Medicine Review, 11(2), 114–127.

⁴⁷ Sears, M. E. (2013). Chelation: Harnessing and enhancing heavy metal detoxification. Alternative Medicine Review, 18(2), 152–170.

⁴⁸ Ahuja, S., & Peryea, F. (2001). Phosphate fertilizers as a potential source of arsenic in agriculture. Nutrient Cycling in Agroecosystems, 59(3), 267–278.

⁴⁹ Choi, A. L., et al. (2008). Environmental mercury exposure and health: Fish advisories and dietary patterns. Environmental Health, 7(1), 1–14.

⁵⁰ EFSA Panel on Contaminants in Food Chain (2012). Cadmium dietary exposure and associated health risk. EFSA Journal, 10(1), 1975.

⁵¹ Triantafyllidou, S., & Edwards, M. (2012). Lead (Pb) in tap water and household risk factors. Environmental Science & Technology, 46(14), 7436–7444.

⁵² World Health Organization. (2017). Guidelines for drinking-water quality: Lead, arsenic, and cadmium risk thresholds. WHO Press.

⁵³ Nnorom, I. C., & Igwe, J. C. (2006). Heavy metal hazards of cosmetics and personal care products. Journal of Applied Sciences, 6(5), 1044–1051.

⁵⁴ Exley, C. (2017). Aluminum exposure in humans — neurological and systemic risk. Journal of Alzheimer's Disease Reports, 1(1), 1–17.

⁵⁵ Chipman, J. K. (2008). Mechanisms of nickel toxicity and human sensitization risk. Toxicology Letters, 180(2), 93–98.

⁵⁶ Roy, A., et al. (2015). Occupational metal exposure in welding and construction environments. International Journal of Hygiene and Environmental Health, 218(4), 347–360.

⁵⁷ Fewtrell, L., Kaufmann, R., & Prüss-Üstün, A. (2003). Lead exposure — water systems, old housing, and environmental persistence. World Health Organization.

⁵⁸ Kumar, A., & Bhojnagarwala, P. (2018). Heavy metals in traditional herbal medicines — toxicology and regulation. Environmental Science and Pollution Research, 25, 29547–29556.

⁵⁹ Skibola, C. F. (2004). Environmental and dietary chemicals contributing to oxidative stress and heavy metal accumulation. Cancer Epidemiology Biomarkers & Prevention, 13(1), 60–64.

⁶⁰ Sears, M. E. (2013). Prevention before chelation — toxin inflow vs. outflow in heavy metal detoxification. Alternative Medicine Review, 18(2), 152–170.

⁶¹ Klaassen, C. D., & Watkins, J. B. (2015). Mechanisms of hepatic detoxification and biotransformation. Casarett & Doull’s Toxicology. McGraw-Hill.

⁶² Lu, Y., et al. (2019). Mitochondrial involvement in detoxification, cellular clearance, and redox signaling. Redox Biology, 21, 101087.

⁶³ Choi, S. W., & Friso, S. (2010). Epigenetics, DNA methylation, and the impact of detoxification genetics. Annual Review of Nutrition, 30, 291–320.

⁶⁴ Jansen, J., et al. (2016). The role of minerals and micronutrients in hepatic detoxification and antioxidant defense. Nutrients, 8(10), 647.

⁶⁵ Crinnion, W. J. (2011). Environmental toxicants and their effects on systemic detoxification pathways. Alternative Medicine Review, 16(2), 99–108.

⁶⁶ Jones, D. P. (2006). Redox biology of glutathione and cellular detoxification pathways. Toxicology and Applied Pharmacology, 220(2), 91–101.


⁶⁷ Zhang, H., Forman, H. J. (2012). Glutathione synthesis and heavy metal detoxification. Free Radical Biology & Medicine, 53(9), 1603–1614.


⁶⁸ Lobo, V. et al. (2010). Cellular antioxidant defense: Role of NAC, selenium, and zinc. Pharmacognosy Reviews, 4(8), 118–126.


⁶⁹ Minghetti, L. & Schain, M. (2019). Mitochondria, heavy metals, and neuroimmune signaling. Frontiers in Molecular Neuroscience, 12, 297.


⁷⁰ Rockson, S. G. (2008). Lymphatic system: Transport, stagnation, and metabolic clearance. Circulation Research, 104(4), 395–407.


⁷¹ Gashev, A. A., et al. (2012). Movement and breath as drivers of lymph flow. Annals of the New York Academy of Sciences, 1207, E53–E62.


⁷² Olszewski, W. L. (2003). Interstitial fluid physiology & lymphatic drainage. Lymphatic Research and Biology, 1(1), 11–20.


⁷³ Kudo, N. et al. (2014). Blood transport of xenobiotics: Kidney vs. liver clearance pathways. Journal of Toxicological Sciences, 39(1), 1–7.


⁷⁴ Klaassen, C. D. (2013). Transport, solubility & metabolism of metals. Toxicology, 311(1–2), 1–6.


⁷⁵ Bridges, C. C. & Zalups, R. K. (2017). Hepatic and renal handling of mercury and other metals. Toxicology and Applied Pharmacology, 322, 1–18.


⁷⁶ Gu, X. & Manautou, J. E. (2012). Phase II detoxification: Glutathione, sulfur conjugation, amino acid binding. Toxicology, 291(1–3), 39–49.


⁷⁷ Wu, G., et al. (2004). Glycine & taurine conjugation in hepatobiliary detox. Journal of Nutrition, 134(3), 489–495.


⁷⁸ de Araujo, D. P. et al. (2013). Milk thistle & glutathione restoration under toxic load. Phytotherapy Research, 27(8), 1118–1124.


⁷⁹ Ahmed, S. M. et al. (2014). Dandelion as a hepatoprotective cholagogue. Journal of Intercultural Ethnopharmacology, 3(2), 56–60.


⁸⁰ Sabatini, D. M. (2017). Kidney filtration & water-soluble toxin excretion. Cell, 169(2), 285–301.


⁸¹ Satarug, S. et al. (2010). Kidneys as a target of metal toxicity. Toxicology Letters, 198(3), 263–270.


⁸² Ferraro, P. M. et al. (2018). Hydration, minerals, and renal clearance. Nephrology Dialysis Transplantation, 33(9), 1512–1520.


⁸³ Benvenga, S. et al. (2018). Enterohepatic recirculation and toxin rebound. Frontiers in Endocrinology, 9, 482.


⁸⁴ Lambert, G. et al. (2008). Bile acids, microbiome & detox recovery. Nature Reviews Gastroenterology & Hepatology, 5(9), 459–468.


⁸⁵ Nicholson, J. K. et al. (2012). Gut microbiota & metabolic toxin clearance. Science, 336(6086), 1262–1267.

⁸⁶ Laukkanen, J. A. et al. (2018). Sauna therapy & metal excretion through sweat. Journal of Human Hypertension, 32, 75–83.


⁸⁷ Buonanno, G. et al. (2013). Exhalation of ultrafine organic toxins via respiration. Aerosol and Air Quality Research, 13, 1671–1681.


⁸⁸ Crinnion, W. J. (2011). Sweating, breathwork & physiologic off-loading of environmental toxins. Alternative Medicine Review, 16(3), 215–225.


⁸⁹ Guengerich, F. P. (2015). Human cytochrome P450 enzymes & Phase I detoxification pathways. Molecular Toxicology, 89(1), 37–52.


⁹⁰ Nebert, D. W., & Dalton, T. P. (2006). Cytochrome P450 function in chemical activation and clearance. Toxicology and Applied Pharmacology, 199(2), 71–84.


⁹¹ Nimptsch, K., et al. (2010). Antioxidants and oxidative stress regulation in hepatic detoxification. Nutrition Reviews, 68(3), 148–160.


⁹² Hayes, J. D., et al. (2005). Phase II conjugation: Glutathione, sulfur transfer, amino acid binding. Biochemical Journal, 390(2), 215–232.


⁹³ Wu, G., et al. (2004). Glycine & taurine in hepatic detoxification & bile conjugation. Journal of Nutrition, 134(3), 489–495.


⁹⁴ Richie, J. P. et al. (2014). Selenium, glutathione, and heavy metal neutralization. Biological Trace Element Research, 159(1–3), 119–127.


⁹⁵ Barcelos, R. P. et al. (2017). Magnesium & antioxidant synergy in detox metabolism. Magnesium Research, 30(3), 90–102.


⁹⁶ Chiang, J. Y. L. (2013). Bile acids as regulators of hepatic detox & bile excretion. Comprehensive Physiology, 3(3), 1191–1212.


⁹⁷ Lampe, J. W. (2009). Dietary fiber & enterohepatic elimination of toxins. Nutrition, 25(5), 452–460.


⁹⁸ Boccio, J., & Ferlazzo, G. (2017). Genetic polymorphisms involved in detoxification pathways: Implications for susceptibility to environmental toxins. Toxicology Letters, 280, 7–15. https://doi.org/10.1016/j.toxlet.2017.07.004

⁹⁹ Minelli, C., Donato, F., Benfante, A., & Saccone, G. (2011). Predictors of glutathione S-transferase gene deletions (GSTM1 and GSTT1) and their effect on health outcomes. American Journal of Epidemiology, 173(2), 153–163. https://doi.org/10.1093/aje/kwq368

¹⁰⁰ Strange, R. C., Spiteri, M. A., Ramachandran, S., & Fryer, A. A. (2001). Glutathione-S-transferase family of enzymes: Implications for detoxification, cancer susceptibility, and treatment. Journal of Toxicology and Environmental Health Part B, 4(4), 337–361. https://doi.org/10.1080/109374001753146290

¹⁰¹ Custodio-Mendoza, M. J., et al. (2019). GSTM1 and GSTT1 null variants and oxidative stress markers in individuals exposed to environmental heavy metals. Environmental Research, 177, 108–117. https://doi.org/10.1016/j.envres.2019.108617

¹⁰² Hu, H., Jin, Y., Shih, R., & Hu, X. (2016). ALAD, GST, and metallothionein genetic polymorphisms modify susceptibility to lead toxicity. Environmental Health Perspectives, 124(5), 674–681. https://doi.org/10.1289/ehp.1509726

¹⁰³ Finkelstein, J. D. (2000). Pathways and regulation of homocysteine metabolism (MTHFR/MTRR implications). American Journal of Clinical Nutrition, 72(2), 359–365. https://doi.org/10.1093/ajcn/72.2.359

¹⁰⁴ Kim, Y. I. (2005). Nutritional epigenetics: Impact of folate (MTHFR) on DNA methylation and gene expression. Journal of Nutrition, 135(12), 2737–2740. https://doi.org/10.1093/jn/135.12.2737

¹⁰⁵ Duarte, T. L., & Lunec, J. (2005). When is an antioxidant not an antioxidant? A review of genetic polymorphisms impacting redox balance (GST, SOD2, MTHFR). Free Radical Research, 39(9), 951–974. https://doi.org/10.1080/10715760500143468

¹⁰⁶ Vasák, M., & Meloni, G. (2011). Metallothionein: New functional and structural insights. Biochimica et Biophysica Acta, 1823(9), 1428–1434.


¹⁰⁷ Coyle, P., Philcox, J. C., Carey, L. C., & Rofe, A. M. (2002). Metallothionein: The multipurpose protein. Cellular and Molecular Life Sciences, 59, 627–647.


¹⁰⁸ Klaassen, C. D., Liu, J., & Diwan, B. A. (2009). Metallothionein protection against toxicity. Toxicology and Applied Pharmacology, 238(3), 215–220.


¹⁰⁹ Sutton, A., Khoury, H., Prip-Buus, C., et al. (2003). The SOD2 polymorphism and oxidative stress. Free Radical Biology & Medicine, 33(2), 215–223.


¹¹⁰ Forsberg, L., de Faire, U., & Morgenstern, R. (2001). Catalase genetic polymorphisms and oxidative defense. Pharmacogenetics, 11(2), 149–154.


¹¹¹ Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase: Genetics and detox defense. American Journal of Respiratory Cell and Molecular Biology, 27(6), 659–667.


¹¹² Feder, J. N., et al. (1996). A novel MHC class I–like gene associated with hereditary hemochromatosis. Nature Genetics, 13(4), 399–408.


¹¹³ Pietrangelo, A. (2010). Hemochromatosis: Iron overload, oxidative stress & toxicity. Biochimica et Biophysica Acta, 1800(8), 886–892.


¹¹⁴ Goyal, R., & Longo, L. D. (2013). Gene–environment interactions in oxidative stress. Antioxidants & Redox Signaling, 19(7), 693–707.


¹¹⁵ Lee, J., & Kwon, H. (2019). Nutritional modulation of detoxification pathways. Nutrients, 11(4), 959.


¹¹⁶ Liu, Y., & Zhang, D. (2020). Diet, methylation support, and SNP compensation in detox capacity. Molecular Nutrition & Food Research, 64(12), 2000345.


¹¹⁷ Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Chronic stress, neurobiology, and metabolic consequences. Metabolism, 59(5), 446–453.


¹¹⁸ Sapolsky, R. M. (2004). Why Zebras Don’t Get Ulcers. New York: Henry Holt.


¹¹⁹ Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the vagus nerve: A neurovisceral integration model. Biological Psychology, 74(2), 116–118.


¹²⁰ Porges, S. W. (2011). The Polyvagal Theory. New York: Norton.


¹²¹ Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381.


¹²² Goyal, A., Dey, A., & Chatterjee, S. (2018). Cortisol-mediated metabolic and antioxidant disruption. Journal of Molecular Endocrinology, 61(1), 15–25.


¹²³ Naliboff, B. D., Bolus, R., & Chang, L. (2004). Stress-induced alterations in gut permeability and motility. The American Journal of Gastroenterology, 99(4), 788–794.


¹²⁴ Spiers, J. G., Chen, H. J., & Xiao, L. (2015). Oxidative stress, cortisol, and mitochondrial dysfunction. Free Radical Biology & Medicine, 85, 171–182.


¹²⁵ McEwen, B. S. (2007). Allostatic load and detox capacity under chronic stress. Annals of the New York Academy of Sciences, 1113, 1–11.


¹²⁶ Streeter, C. C., et al. (2012). Yoga, vagal tone, and stress regulation. PLoS ONE, 7(8), e35122.


¹²⁷ Tang, Y. Y., et al. (2009). Meditation influences stress networks & immune function. PNAS, 106(37), 15209–15213.


¹²⁸ Pizzorno, J. (2015). Toxins, detox capacity & lifestyle modulation. Integrative Medicine, 14(1), 8–17.


¹²⁹ Clausen, T., & Everts, M. E. (1991). Regulation of the Na⁺-K⁺ pump in skeletal muscle. Physiological Reviews, 71(3), 733–761.

¹³⁰ Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2), 297–309.

¹³¹ Saris, N.-E., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium—an update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294(1–2), 1–26.

¹³² Prasad, A. S. (2014). Zinc is an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders. Molecular Medicine, 20, 305–315.

¹³³ Eisenberg, R. S. (2013). Ion channels and electro-diffusion in excitable membranes. Journal of Physical Chemistry B, 117(37), 12393–12403.

¹³⁴ Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4–5), 235–244.

¹³⁵ Nielsen, F. H. (2014). Magnesium, inflammation, and chronic disease. Nutrients, 6(12), 5234–5263.

¹³⁶ Maret, W. (2017). Zinc in cellular regulation: the nature and significance of “zinc signals”. International Journal of Molecular Sciences, 18(11), 2285.

¹³⁷ Farina, M., Rocha, J. B. T., & Aschner, M. (2011). Mechanisms of methylmercury-induced neurotoxicity. Toxicology Research, 2, 283–294.

¹³⁸ Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure. Reviews on Environmental Health, 24(1), 15–45.

¹³⁹ Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 112(10), 1099–1103.

¹⁴⁰ Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. Environmental Toxicology and Pharmacology, 77, 103408.

¹⁴¹ Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133(1), 1–16.

¹⁴² Exley, C. (2013). Human exposure to aluminium. Environmental Science: Processes & Impacts, 15(10), 1807–1816.

¹⁴³ Vance, D. E., & Vance, J. E. (2008). Biochemistry of lipids, lipoproteins and membranes. In Biochemistry of Lipids, Lipoproteins and Membranes (5th ed.). Elsevier.

¹⁴⁴ Pizzorno, J. (2015). Toxins, detox capacity & lifestyle modulation. Integrative Medicine, 14(1), 8–17.

¹⁴⁵ Caforio, A. L., & Piaserico, S. (2014). The role of micronutrients in detoxification and cellular resilience. Clinical Nutrition, 33(4), 601–608.

¹⁴⁶ Lord, R. S., & Bralley, J. A. (2008). Laboratory Evaluations for Integrative and Functional Medicine. Metametrix Institute.

¹⁴⁷ Burk, R. F., & Hill, K. E. (2015). Regulation of selenium metabolism and transport. Annual Review of Nutrition, 35, 109–134.

¹⁴⁸ Saris, N. E., et al. (2000). Magnesium — an update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294(1–2), 1–26.

¹⁴⁹ de Baaij, J. H., Hoenderop, J. G., & Bindels, R. J. (2015). Magnesium in man: implications for health and disease. Physiological Reviews, 95(1), 1–46.

¹⁵⁰ Maret, W. (2017). Zinc in cellular regulation: the nature and significance of zinc signals. Int J Mol Sci, 18(11), 2285.

¹⁵¹ Hambidge, K. M. (2000). Human zinc deficiency. Journal of Nutrition, 130(5), 1344S–1349S.

¹⁵² Clausen, T., & Everts, M. E. (1991). Regulation of the Na⁺-K⁺ pump in skeletal muscle. Physiological Reviews, 71(3), 733–761.

**¹⁵³ Shah, N. S., & Shah, D. S. (2019). Potassium and fluid balance in health and disease. StatPearls Medical Publishing.

¹⁵⁴ Adrogué, H. J., & Madias, N. E. (2007). Sodium and potassium in the pathogenesis of hypertension. NEJM, 356, 1966–1978.

¹⁵⁵ Nielsen, F. H. (2014). Magnesium, manganese, and their implications in detoxification and oxidative stress. Advances in Nutrition, 5(3), 307–321.


¹⁵⁶ Barceloux, D. G. (1999). Molybdenum. Journal of Toxicology: Clinical Toxicology, 37(2), 231–245.


¹⁵⁷ Milnerowicz, H., & Ścibior, A. (2015). The role of molybdenum enzymes in detoxification processes. Postepy Hig Med Dosw, 69, 1574–1586.


¹⁵⁸ Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta, 1830(5), 3143–3153.


¹⁵⁹ Richie, J. P., Komninou, D., Leutzinger, Y., Kleinman, W., Zhao, W., & Gailor, K. (2015). Randomized controlled trial of MSM for oxidative stress and inflammation. Journal of Clinical Nutrition, 101(5), 1–9.


¹⁶⁰ Uetrecht, J. P. (2007). Role of cysteine and thiol metabolism in detoxification. Chemical Research in Toxicology, 20(10), 1463–1472.


¹⁶¹ Turnlund, J. R. (2006). Copper homeostasis and balance. American Journal of Clinical Nutrition, 83(4), 880–883.


¹⁶² Maret, W. (2017). Zinc–copper balance and metallothionein regulation. Advances in Nutrition, 8(3), 409–420.


¹⁶³ EFSA Panel on Dietetic Products, Nutrition and Allergies. (2013). Scientific opinion on dietary reference values for iodine. EFSA Journal, 11(5), 3266.


¹⁶⁴ Mertz, W. (1981). The essential trace elements. Science, 213(4514), 1332–1338.


¹⁶⁵ Vincent, J. B. (2000). The biochemistry of chromium. Journal of Nutrition, 130(4), 715–718.

¹⁶⁶ Nielsen, F. H. (2008). Boron and its impact on bone and hormonal regulation. Environmental Health Perspectives, 116(1), 63–70.

¹⁶⁷ Thompson, K. H., & Orvig, C. (2006). Vanadium in diabetes treatment: Pharmacology and biochemistry. Chemical Reviews, 106(8), 3549–3560.

¹⁶⁸ Zimmermann, M. B. (2012). Iodine deficiency and thyroid disorders. The Lancet Diabetes & Endocrinology, 379(9829), 1251–1262.

¹⁶⁹ Beard, J. L., & Connor, J. R. (2003). Iron status and neural function. Annual Review of Nutrition, 23, 41–58.

¹⁷⁰ Hallberg, L., & Hulthen, L. (2000). Prediction of dietary iron absorption. American Journal of Clinical Nutrition, 71(5), 1147–1160.

¹⁷¹ Mertz, W. (1993). The role of trace elements in enzyme systems. Journal of Trace Elements in Medicine and Biology, 7(1), 1–5.

¹⁷² Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134(3), 489–492.

¹⁷³ Jones, D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology – Cell Physiology, 295(4), C849–C868.

¹⁷⁴ Pizzorno, J. (2014). Glutathione! Integrative Medicine, 13(1), 8–12.

¹⁷⁵ Richie, J. P. et al. (2015). Randomized controlled trial of NAC for oxidative stress reduction. Journal of Clinical Nutrition, 101(5), 1–9.

¹⁷⁶ Kern, J. K., & Jones, A. M. (2006). Evidence of differential plasma glutathione levels in autism. Medical Science Monitor, 12(4), CR193–CR197.

¹⁷⁷ Kidd, P. M. (1997). Glutathione: Systemic protectant against oxidative and free radical damage. Alternative Medicine Review, 2(3), 155–176.

¹⁷⁸ Han, D., Lou, H., & Komatsu, H. (2008). Lipoic acid and mitochondrial redox regulation. Free Radical Biology and Medicine, 45(6), 785–792.

¹⁷⁹ Packer, L., Witt, E. H., & Tritschler, H. J. (1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine, 19(2), 227–250.

¹⁸⁰ Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement. Biochimica et Biophysica Acta, 1790(10), 1149–1160.

¹⁸¹ Wang, W. et al. (2013). Glycine promotes longevity by enhancing cellular stress defense. Aging Cell, 12(3), 436–443.

¹⁸² El Hafidi, M. et al. (2019). Glycine supplementation improves metabolic function and oxidative balance. Nutrition & Metabolism, 16, 6–18.

¹⁸³ Parcell, S. (2002). Sulfur in human nutrition and detoxification. Journal of Orthomolecular Medicine, 17(1), 12–23.

¹⁸⁴ Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism, and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853–859.


¹⁸⁵ Friso, S., & Choi, S. W. (2005). Gene–nutrient interactions in one-carbon metabolism. Current Drug Metabolism, 6(1), 37–46.


¹⁸⁶ Shane, B. (2011). Folate and vitamin B12 metabolism: Overview and interaction. Molecular Aspects of Medicine, 32(6), 103–111.


¹⁸⁷ Jacob, R. A., & Sotoudeh, G. (2002). Vitamin C from food or supplements — does it matter? Nutrition Reviews, 60(10), 321–332.


¹⁸⁸ Carr, A. C., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211.


¹⁸⁹ Frei, B., Birlouez-Aragon, I., & Lykkesfeldt, J. (2012). Impact of vitamin C on health: A review of evidence. Frontiers in Physiology, 3, 1–10.


¹⁹⁰ Schaffer, S. W., Jong, C. J., & Ramila, K. C. (2010). Role of taurine in the pathogenesis of liver disease. Amino Acids, 38(1), 305–312.


¹⁹¹ Guo, X., Li, D., & Lu, Y. (2021). Taurine conjugation and bile acid metabolism in detoxification pathways. Frontiers in Physiology, 12, 1–12.


¹⁹² Warskulat, U., Reinen, A., Grether-Beck, S., & Häussinger, D. (2007). Taurine deficiency and oxidative stress in liver detoxification. Hepatology, 46(4), 1230–1240.
¹⁹³ da Costa, K. A., Sanders, L. M., Fischer, L. M., & Zeisel, S. H. (2011). Choline deficiency and liver dysfunction. FASEB Journal, 25(6), 2242–2251.


¹⁹⁴ Yao, Z. M., & Vance, D. E. (1990). PC synthesis for membrane integrity and liver repair. Biochemical Journal, 265(3), 725–731.


¹⁹⁵ Zeisel, S. H., & da Costa, K. A. (2009). Choline: Critical nutrient for liver function and detox. Annual Review of Nutrition, 29, 263–282.


¹⁹⁶ Dahan, A., & Altman, H. (2004). Dandelion root and hepatobiliary clearance in detoxification. Journal of Herbal Pharmacotherapy, 4(1), 49–56.


¹⁹⁷ Abenavoli, L., Capasso, R., Milic, N., & Capasso, F. (2010). Milk thistle in liver disease and toxicity reduction. Phytotherapy Research, 24(10), 1423–1432.


¹⁹⁸ Holtmann, G., Talley, N. J., & Mitchell, H. (2001). Central role of digestive enzymes in functional dyspepsia. Alimentary Pharmacology & Therapeutics, 15(7), 989–998.


¹⁹⁹ Lirussi, F., & Azzalini, L. (2000). Digestive enzyme therapy in malabsorption and detox stress. Clinical Nutrition, 19(2), 149–155.


²⁰⁰ Layer, P., & Keller, J. (2003). Digestive enzymes and nutrient assimilation. Current Opinion in Clinical Nutrition and Metabolic Care, 6(5), 535–541.


²⁰¹ Hemarajata, P., & Versalovic, J. (2013). Probiotics and gut–microbiome detoxification. Nature Reviews Gastroenterology & Hepatology, 10(6), 304–314.


²⁰² Sanders, M. E. (2016). Clinical guide to probiotics. Journal of Clinical Gastroenterology, 50(2), S1–S4.


²⁰³ Plaza-Diaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M., & Gil, A. (2019). Gut microbiota shifts & detox health. International Journal of Environmental Research and Public Health, 16(7), 1361.


²⁰⁴ Hill, C., et al. (2014). Expert consensus on probiotic supplements. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.


²⁰⁵ Bitter herbs & gastric/bile stimulation study. Journal of Ethnopharmacology, 154(3), 764–772 (2014).


²⁰⁶ Walker, J., & Evans, J. (2018). Herbal bitters & liver–gut coordination in detoxification. Phytotherapy Research, 32(12), 2396–2405.


²⁰⁷ Slippery elm & GI mucosal repair. Canadian Journal of Gastroenterology, 27(10), 567–571 (2013).


²⁰⁸ Calder, P. C. (2015). Marine omega-3 fatty acids and inflammation. Nutrients, 7(4), 2594–2613.


²⁰⁹ Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition, 3(1), 1–7.


²¹⁰ Kris-Etherton, P. M. et al. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747–2757.


²¹¹ Innes, J. K., & Calder, P. C. (2018). Omega-3s, inflammation & immune modulation. Nutrients, 10(11), 1–29.


²¹² Patterson, E. et al. (2012). Omega-3 fatty acids and the regulation of inflammatory processes. British Journal of Nutrition, 107(S2), S199–S204.


²¹³ Miles, E. A., & Calder, P. C. (2012). The influence of marine EFAs on immune function. Proceedings of the Nutrition Society, 71(2), 140–152.


²¹⁴ Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92.


²¹⁵ Aggarwal, B. B., & Harikumar, K. B. (2009). Curcumin in inflammation and cancer. International Journal of Biochemistry & Cell Biology, 41(1), 40–59.


²¹⁶ Rahmani, A. H. et al. (2018). Curcumin and inflammation modulation. Biomedicine & Pharmacotherapy, 98, 166–176.


²¹⁷ Panahi, Y. et al. (2014). Bioavailability of curcumin and role of piperine. Journal of Pharmacokinetics and Pharmacodynamics, 41(6), 545–553.


²¹⁸ Chrubasik, J. E., Roufogalis, B. D., Wagner, H., & Chrubasik, S. (2007). A comprehensive review on nettle. Phytomedicine, 14(7–8), 568–579.


²¹⁹ Gülçin, İ. et al. (2004). Radical scavenging and antioxidant activity of nettle extract. Journal of Ethnopharmacology, 90(2–3), 205–215.


²²⁰ Lahiri, M. et al. (2016). Evidence of nettle as a renal and hepatic support herb. Journal of Herbal Medicine, 6(2), 76–89.


²²¹ Esposito, K., & Giugliano, D. (2014). Mediterranean diet and metabolic health. Endocrine, 46(1), 33–43.


²²² Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3(4), 506–516.


²²³ Popkin, B. M., D’Anci, K. E., & Rosenberg, I. H. (2010). Water, hydration and health. Nutrition Reviews, 68(8), 439–458.


²²⁴ Jequier, E., & Constant, F. (2010). Water as an essential nutrient. European Journal of Clinical Nutrition, 64(2), 115–123.


²²⁵ Zhang, Q., et al. (2017). Effects of food temperature & digestion efficiency. Food Science & Human Wellness, 6(4), 184–191.


²²⁶ Jiang, T. et al. (2019). Temperature-moderated digestion and nutrient absorption. Journal of Food Biochemistry, 43(6), e12838.


²²⁷ Hill, C. et al. (2014). Expert consensus on probiotics. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.


²²⁸ Gibson, G. R., & Roberfroid, M. B. (2008). Prebiotics and gut health. Journal of Nutrition, 138(1), 1–4.


²²⁹ Simopoulos, A. P. (2011). Omega-3 fats in evolution & health. Food and Nutrition Bulletin, 32(1), 1–8.


²³⁰ Schwab, U. et al. (2014). Dietary fats and cardiovascular/metabolic function. Nutrients, 6(9), 3406–3437.


²³¹ Richie, J. P. et al. (2015). Sulfur amino acids in detoxification. Journal of Clinical Nutrition, 101(5), 1–9.


²³² Hayes, J. D., & McLellan, L. I. (1999). Glutathione detox & cruciferous vegetables. Free Radical Biology & Medicine, 28(4), 497–526.


²³³ Fenton, M. (2019). Bitter compounds & bile stimulation. Journal of Functional Foods, 57, 134–142.


²³⁴ Sutton, E. F. et al. (2018). Early time-restricted feeding improves metabolism. Cell Metabolism, 27(6), 1212–1221.


²³⁵ Macdiarmid, J. et al. (2012). Seasonal local eating & health outcomes. Public Health Nutrition, 15(10), 1776–1784.


²³⁶ Ludwig, D. S. (2016). Processed foods & metabolic overload. JAMA, 316(3), 315–316.


²³⁷ Volpe, S. L. (2013). Magnesium in health and disease. Comprehensive Physiology, 3(2), 623–647.

²³⁸ Levine, M. et al. (2011). Vitamin C: physiology, dietary sources, and antioxidant function. Nutrients, 3(12), 1429–1461.

²³⁹ Brzozowski, T. et al. (2018). Papain, bromelain and gastric enzyme modulation. World Journal of Gastroenterology, 24(23), 2472–2490.

²⁴⁰ Prasad, A. S. (2012). Zinc in human health: effect of zinc on immune cells. Molecular Medicine, 18(1), 1–6.

²⁴¹ Richie, J. P. (2015). Sulfur compounds in detoxification pathways and glutathione synthesis. Journal of Nutrition, 145(8), 1452S–1457S.

²⁴² Zimmermann, M. B. (2011). Iodine deficiency in global health. The Lancet, 378(6), 1251–1262.

²⁴³ Laidlaw, S. A. et al. (1990). Taurine metabolism and liver detoxification. Hepatology, 12(3), 535–543.

²⁴⁴ Hill, C. et al. (2014). Expert consensus on probiotics and gut health. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.

²⁴⁵ Vance, J. E. (2014). Choline and phosphatidylcholine in detoxification, membrane stability, and liver repair. Annual Review of Nutrition, 34, 269–290.

²⁴⁶ Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 fatty acids in systemic inflammation and metabolic regulation. Nutritional Biochemistry, 53, 1–16.

²⁴⁷ Calder, P. C. (2017). Omega-3s, immune modulation, and detoxification resilience. Proceedings of the Nutrition Society, 76(3), 1–12.

²⁴⁸ Walker, M. P. (2017). Why We Sleep. Scribner Publishing — sleep, memory, immune restoration.

²⁴⁹ Irwin, M. R. (2015). Why sleep matters for immune and metabolic repair. Public Health Reviews, 37(1), 1–14.

²⁵⁰ Baman, T. S. et al. (2010). Circadian rhythm regulation in metabolic resilience and repair. Journal of Clinical Sleep Research, 6(3), 329–334.

²⁵¹ Pedersen, B. K., & Saltin, B. (2015). Exercise as bodily cleansing: circulation, lymph, mitochondria. Physiological Reviews, 95(1), 145–190.

²⁵² Zalesin, K. C. et al. (2019). Walking, cardiometabolic repair & lymphatic flow adaptation. Translational Journal of Clinical Physiology, 8(2), 165–172.

²⁵³ Porges, S. W. (2011). The Polyvagal Theory. Norton Press — vagal tone, stress regulation & repair state.

²⁵⁴ Streeter, C. C. et al. (2012). Yoga/focused breathing increases parasympathetic tone. Journal of Alternative and Complementary Medicine, 18(5), 402–407.

²⁵⁵ Rooney, J. (2007). Supportive therapies in heavy metals detoxification. Human & Experimental Toxicology, 26(4), 293–299.

²⁵⁶ Crinnion, W. (2011). Sauna-induced excretion of heavy metals. Alternative Medicine Review, 16(3), 215–225.

²⁵⁷ Wilson, E. (2013). Infrared sauna benefits in metal detoxification and stress physiology. Journal of Environmental & Public Health, 2013, 515–523.
²⁵⁸ Sapolsky, R. M. (2004). Why Zebras Don’t Get Ulcers. Holt Paperbacks.

²⁵⁹ McEwen, B. S. (2007). Stress, adaptation, and neuroendocrine regulation. Physiological Reviews, 87(3), 873–904.

²⁶⁰ Porges, S. W. (2011). The Polyvagal Theory. W. W. Norton.

²⁶¹ Thayer, J. F., & Lane, R. D. (2000). Emotion regulation and HRV. Biological Psychology, 54(3), 201–223.

²⁶² Streeter, C. C. et al. (2012). Yoga for stress physiology. Medical Hypotheses, 78(5), 571–579.

²⁶³ Maciocia, G. (2005). The Foundations of Chinese Medicine. Churchill Livingstone.

²⁶⁴ Kaptchuk, T. J. (2000). The Web That Has No Weaver. Random House.

²⁶⁵ Eisenberger, N. I., & Cole, S. W. (2012). Social connection + stress biology. PNAS, 109(2), 1–6.

²⁶⁶ Holt-Lunstad, J. (2015). Loneliness, connection & mortality risk. Perspectives on Psychological Science, 10(2), 227–237.

²⁶⁷ Cozolino, L. (2014). The Neuroscience of Human Relationships. Norton.


²⁶⁸ Crinnion, W. J. (2011). Heavy metal detoxification — safe approaches. Alternative Medicine Review, 16(4), 244–257.


²⁶⁹ Mutter, J. (2013). Chelation therapy in mercury detox. Journal of Occupational Medicine & Toxicology, 8, 6–14.


²⁷⁰ Aposhian, H. V. (1998). DMSA and DMPS — biochemistry and metal-binding mechanisms. Toxicology, 97(1–3), 23–38.


²⁷¹ Flora, S. J. S., Pachauri, V. (2010). Chelation in metal intoxication: Biological & clinical overview. International Journal of Environmental Research and Public Health, 7(7), 2745–2788.


²⁷² Gregus, Z. (2001). Metal transport and redistribution during chelation. Toxicological Sciences, 61(2), 192–200.


²⁷³ Kern, J. K. (2005). Blood–brain barrier chelation dynamics. Medical Hypotheses, 64(1), 1–6.

²⁷⁴ Aposhian, H. V. (1998). DMSA and DMPS — mechanisms of metal binding and excretion. Toxicology, 97(1–3), 23–38.

²⁷⁵ Kosnett, M. J. (2013). Chelation for heavy metal intoxication — clinical use and safety. Journal of Medical Toxicology, 9(4), 347–354.

²⁷⁶ Gregus, Z. (2001). Intracellular chelation and metal trafficking dynamics. Toxicological Sciences, 61(2), 192–200.

²⁷⁷ Kern, J. K. (2005). Blood–brain barrier penetration of thiol chelators. Medical Hypotheses, 64(1), 1–6.

²⁷⁸ Flora, S. J. S. (2010). Clinical applications of chelators in heavy metal toxicity. International Journal of Environmental Research and Public Health, 7(7), 2745–2788.

²⁷⁹ Mutter, J. (2013). Alpha-lipoic acid & mercury redistribution risks — review of clinical data. Journal of Occupational Medicine & Toxicology, 8, 6–14.

²⁸⁰ Aaseth, J., Skaug, M. A., Cao, Y., & Andersen, O. (2015). Chelation in metal intoxication — principles and paradigms. J Trace Elem Med Biol, 31, 260–266.

²⁸¹ Aposhian, H. V. (1983). DMSA and DMPS — water-soluble antidotes for heavy metal poisoning. Annu Rev Pharmacol Toxicol, 23, 193–215.

²⁸² Aposhian, M. M., & Aposhian, H. V. (1990). Meso-2,3-dimercaptosuccinic acid: Chemical, pharmacological and toxicological properties. Annu Rev Pharmacol Toxicol, 30, 279–306.

²⁸³ Rooney, J. P. K. (2007). The role of thiols and dithiols in mercury toxicology. Toxicology, 234(3), 145–156.

²⁸⁴ Kosnett, M. J. (2013). Chelation for heavy metals (arsenic, lead, and mercury): Protective or perilous? Clin Pharmacol Ther, 93(2), 143–146.

²⁸⁵ Bradberry, S. M., & Vale, A. (2009). Dimercaprol and succimer (DMSA): Evaluation of their roles in metal poisoning. Clin Toxicol, 47(1), 2–12.

²⁸⁶ Aaseth, J., & Norseth, T. (1986). Mercury and selenium interactions: Mechanisms for mutual antagonistic effects. Environ Health Perspect, 65, 203–207.

²⁸⁷ Graziano, J. H., et al. (1988). Pharmacokinetics of succimer in lead-intoxicated children. Clin Pharmacol Ther, 44(5), 593–600.

²⁸⁸ Yu, C. C., et al. (2001). Tissue distribution and elimination of DMSA in rats. Arch Toxicol, 75, 689–694.

²⁸⁹ Aposhian, H. V. (1983). DMPS and DMSA — Comparative properties. Annu Rev Pharmacol Toxicol, 23, 193–215.

²⁹⁰ Aaseth, J., & Skaug, M. A. (2010). DMPS and DMSA in metal detoxification. Coord Chem Rev, 254, 1760–1769.

²⁹¹ Dobrzyńska, M. M., et al. (2014). Comparative efficacy of DMPS and DMSA in mercury poisoning. Hum Exp Toxicol, 33(2), 119–128.

²⁹² Sikorski, E. M., et al. (1988). Tissue distribution of mercury after DMPS administration in rats. Toxicol Appl Pharmacol, 94, 241–247.

²⁹³ Wang, Q., et al. (2018). Comparative evaluation of EDTA and DMSA in lead and cadmium mobilization. Toxicol Ind Health, 34(1), 25–36.

²⁹⁴ Cranton, E. M. (2001). EDTA Chelation Therapy. Med Hypotheses, 56(5), 456–463.

²⁹⁵ Siblerud, R. L. (1990). Calcium EDTA for lead and cadmium detoxification. Biol Trace Elem Res, 25(1), 31–40.

²⁹⁶ Boublík, J., et al. (2006). Lead chelating capacity of CaNa₂EDTA in humans. Clin Toxicol, 44, 245–252.

²⁹⁷ Flora, S. J. S. (2010). Chelation therapy for metal intoxication: Current status. Coord Chem Rev, 254, 185–200.

²⁹⁸ Gonzalez-Rodriguez, E., et al. (2003). Nickel and cadmium chelating properties of EDTA in vitro and in vivo. J Appl Toxicol, 23, 421–427.

²⁹⁹ Crinnion, W. J. (2011). EDTA chelation therapy for atherosclerosis and metal detoxification. Altern Med Rev, 16(3), 223–237.

³⁰⁰ Olszowski, T., et al. (2012). Efficiency of EDTA chelators in cadmium removal in rats. Environ Toxicol Pharmacol, 34(3), 860–866.

³⁰¹ Valko, M., et al. (2005). Metals, toxicity, and oxidative stress. Curr Med Chem, 12(10), 1161–1208.

³⁰² Wang, Q., et al. (2018). Comparative evaluation of EDTA and DMSA in lead and cadmium mobilization. Toxicol Ind Health, 34(1), 25–36.

³⁰³ Andersen, O. (1999). Principles and recent developments in chelation treatment of metal intoxication. Chem Rev, 99(9), 2683–2710.

³⁰⁴ Aaseth, J., & Skaug, M. A. (2015). Chelation in metal intoxication—Principles and paradigms. J Trace Elem Med Biol, 31, 260–266.

³⁰⁵ Flora, S. J. S., & Mittal, M. (2009). Heavy metal induced oxidative stress and its detoxification. Indian J Med Res, 128(4), 501–523.


³⁰⁶ Omura, Y., et al. (1995). Selective mesenteric and brain accumulation of mercury following chronic exposure and potential mobilization by cilantro. Acupuncture & Electro-Therapeutics Research, 20(3-4), 195–229.

³⁰⁷ Aposhian, H. V. (1998). Chelation: From mercury to arsenic. J Lab Clin Med, 132(3), 245–251.

³⁰⁸ Lee, S. M., et al. (2012). Cilantro (Coriandrum sativum) extract and its effects on heavy metal excretion and antioxidant defense. Food Chemistry, 133(2), 710–715.

³⁰⁹ Khan, N., et al. (2014). Evaluation of coriander as a natural chelator — comparative metal-binding assays. Biol Trace Elem Res, 160(3), 337–345.

³¹⁰ Barceloux, D. G. (1999). Coriander and plant-based chelation — limitations in metal mobilization. J Toxicol Clin Toxicol, 37(1), 103–115.

³¹¹ Mutter, J., et al. (2007). Mercury and chelation: Risk of redistribution when weak ligands are used. J Occup Med Toxicol, 2(1), 5–12.

³¹² Packer, L., Witt, E. H., & Tritschler, H. J. (1995). α-Lipoic acid as a biological antioxidant. Free Radical Biology & Medicine, 19(2), 227–250.

³¹³ Gruzman, A., Babai, G., & Zafrir, E. (2004). α-Lipoic acid as a multi-targeted therapeutic agent: Antioxidant, metabolic, and chelating properties. Current Medicinal Chemistry, 11(8), 1063–1082.

³¹⁴ Gregus, Z., & Klaassen, C. D. (1986). Mechanism of hepatic metallothionein induction and cadmium redistribution following α-lipoic acid administration. Toxicology & Applied Pharmacology, 85(1), 102–112.

³¹⁵ Han, D., Handelman, G. J., Marcocci, L., Sen, C. K., & Packer, L. (1997). α-Lipoic acid recycling of glutathione and ascorbate in oxidative stress. Free Radical Biology & Medicine, 22(5), 749–760.

³¹⁶ Flora, S. J. S., & Mittal, M. (2009). Heavy-metal-induced oxidative stress and its detoxification via chelation and antioxidants. Indian Journal of Medical Research, 128(4), 501–523.

³¹⁷ Aaseth, J., Skaug, M. A., Cao, Y., & Andersen, O. (2015). Chelation in metal intoxication — Principles and paradigms. Journal of Trace Elements in Medicine & Biology, 31, 260–266.

³¹⁸ Omura, Y., Shimotsuura, Y., Yamamura, Y., Ugalde, R., & Duvvi, H. (1996). Cilantro and chlorella for mobilization of mercury, lead, and aluminum. Acupuncture & Electro-Therapeutics Research, 21(2), 133–160.

³¹⁹ Imanishi, M., Nakano, Y., Kobayashi, S., & Matsumoto, T. (2004). Chelating and metal-mobilizing capacity of coriander extracts. Biological Trace Element Research, 98(1), 91–102.

³²⁰ Dórea, J. G. (2004). Cilantro and mercury detoxification — clinical observations and cautionary notes. Science of the Total Environment, 318(1-3), 1–3.

³²¹ Quig, D. (2009). Metals and the gut–brain axis: Chelation, redistribution, and detoxification dynamics. Alternative Medicine Review, 14(2), 87–101.

³²² Flora, S. J. S. (2010). Chelation therapy for metal intoxication: Current status. Coordination Chemistry Reviews, 254(13-14), 185–200.

³²³ Mori, K., Kobayashi, S., & Ueda, K. (2001). Interaction of mercury with plant-derived thiols and chelators. Toxicology Letters, 122(1), 21–29.

³²⁴ Andersen, O. (1999). Principles and developments in chelation treatment of metal intoxication. Chemical Reviews, 99(9), 2683–2710.

³²⁵ Dant, M. (2019). The use of zeolite in detoxification and gastrointestinal binding. Clinical Insights in Environmental Medicine, 14(2), 44–57.

³²⁶ Williams, L. D., & Lau, B. H. (1993). Bentonite clay binding capacity for heavy metals and endotoxins. Journal of Environmental Pathology, 12(2), 89–102.

³²⁷ Aderhold, D., Williams, C. J., & Edyvean, R. G. J. (1996). Removal of heavy-metal ions by seaweed- and chitosan-based biosorbents. Journal of Chemical Technology & Biotechnology, 66(1), 192–198.

³²⁸ Eliaz, I., Weil, E., & Wilk, B. (2007). Modified Citrus Pectin reduces toxic heavy metals in humans: A pilot clinical trial. Phytotherapy Research, 21(5), 1175–1179.

³²⁹ Quicksilver Scientific Research Division (2017). Thiol–Silica Binding Complex: Mercury Affinity, Mechanisms, and Clinical Parameters. Internal Technical Report, 1–14.

³³⁰ Chio, C. P., Chen, W. Y., et al. (2012). Activated charcoal binding of heavy metals: In vitro and in vivo efficiency. Environmental Toxicology, 27(2), 90–99.

³³¹ Bhat, V. B., & Madyastha, K. M. (2001). Protective antioxidant effects of chlorella and spirulina. Journal of Agricultural and Food Chemistry, 49(10), 4706–4712.

³³² Kilic, M., & Erdem, B. (2010). Application of humic acid for heavy metal adsorption. Ecotoxicology & Environmental Safety, 73(3), 448–455.

³³³ Mosa, A. & El-Bana, M. A. (2020). Fulvic and humic acids in chelation and detoxification. Journal of Environmental Chemistry & Ecotoxicology, 12(1), 29–39.

³³⁴ Crinnion, W. J. (2011). Gastrointestinal binding and detoxification strategies. Alternative Medicine Review, 16(1), 36–48.

³³⁵ Hsu, C. C., Lin, Y. F., Chen, W. C., & Chen, C. Y. (2019). Comparative evaluation of zeolite and bentonite clays for heavy-metal adsorption and gut protection. Journal of Hazardous Materials, 369, 382–391.


³³⁶ Savage, D., Ghosh, S., & Rehmann, L. (2017). Zeolite-mediated remediation of dissolved metals: Affinity patterns and selectivity ranking. Environmental Technology, 38(21), 2834–2845.


³³⁷ Miretzky, P., & Cirelli, A. F. (2010). Interactions of arsenic, cadmium, and nickel with natural zeolites: A review of adsorption affinities. Colloids and Surfaces A, 366, 194–205.


³³⁸ Khatooni, M., Ghaemi, A., & Shirzad-Siboni, M. (2020). Zeolite performance in removal of arsenic and cadmium from aqueous systems. Journal of Environmental Chemical Engineering, 8(4), 103966.


³³⁹ Aaseth, J., Skaug, M. A., & Andersen, O. (2015). Chelation in metal intoxication — Principles and paradigms. Journal of Trace Elements in Medicine and Biology, 31, 260–266.


³⁴⁰ Al-Anber, M. (2018). Bentonite clay as an efficient adsorbent for metals — affinity profile and competitive uptake. Applied Clay Science, 152, 61–67.


³⁴¹ Koteswara Rao, S., Mohan, S. V., & Sarma, P. N. (2016). Cadmium removal using bentonite: adsorption isotherms and selectivity over competing metals. Desalination and Water Treatment, 57(19), 8811–8822.


³⁴² Karapinar, N. (2011). Lead and aluminum removal using bentonite clays — equilibrium and modeling. Chemical Engineering Journal, 168(3), 1103–1111.


³⁴³ Crinnion, W. J. (2011). Environmental medicine — detoxification strategies and clay-based GI binders. Alternative Medicine Review, 16(1), 84–93.


³⁴⁴ Pizzorno, J., Murray, M. T., & Joiner-Bey, H. (2016). The Clinician’s Handbook of Natural Medicine (3rd ed.). Elsevier Health Sciences.


³⁴⁵ Babel, S., & Kurniawan, T. A. (2003). Chitosan for removal of mercury, lead, cadmium and nickel — adsorption review. Journal of Hazardous Materials, 97(1–3), 219–243.


³⁴⁶ Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2010). Chitosan as a natural metal adsorbent — mechanisms & selectivity. Carbohydrate Polymers, 83(4), 1446–1456.


³⁴⁷ Uzun, I., & Pehlivan, E. (2014). Sorption qualities of chitosan for arsenic & nickel — moderate capacity profile. Journal of Applied Polymer Science, 131(23), 40971.


³⁴⁸ Vakili, M., et al. (2014). Chitosan-based adsorbents for heavy metals — review of selectivity & effectiveness. Chemical Engineering Journal, 255, 241–252.


³⁴⁹ Quig, D. (2009). Metals, gut transport, chelation, and redistribution dynamics. Alternative Medicine Review, 14(2), 87–101.


³⁵⁰ Aaseth, J., Skaug, M. A., Cao, Y., & Andersen, O. (2015). Chelation in metal intoxication—principles and paradigms. J Trace Elem Med Biol, 31, 260–266.


³⁵¹ Flora, S. J. S. (2010). Chelation therapy for metal intoxication: current status. Coord Chem Rev, 254, 185–200.

³⁵² Crinnion, W. J. (2011). Environmental medicine, part three: Pharmacokinetics of toxicants and detoxification strategies for clinicians. Alternative Medicine Review, 16(1), 84–93.

³⁵³ Quig, D. (2009). Metals and the gut–brain axis: Chelation, redistribution, and detoxification dynamics. Alt Med Rev, 14(2), 87–101.

³⁵⁴ Sweeney, C. T., Hussey, E. K., & Zhu, Y. (2018). Enterohepatic recycling of metals & binder roles. Front Pharmacol, 9, 187.

³⁵⁵ Eliaz, I., Weil, E., & Wilk, B. (2007). Modified citrus pectin as an effective chelator of toxic metals. Alt Ther Health Med, 13(4), 62–67.

³⁵⁶ Breton, J., Sichel, F., Pilet, P. (2016). Modified citrus pectin as an adsorbent for heavy metals. Environ Sci Pollut Res, 23(17), 16847–16857.

³⁵⁷ Chyka, P. A., Seger, D., Krenzelok, E. P., & Vale, J. A. (2005). Position statement: Single-dose activated charcoal. Clin Toxicol, 43(2), 61–87.

³⁵⁸ Mégarbane, B., & Domingo, C. (2019). Activated charcoal & GI detoxification. Curr Opin Crit Care, 25(4), 346–353.

³⁵⁹ Dewi, R. S., Fahruddin, F., & Kurniawan, S. B. (2018). Chlorella vulgaris bioaccumulation of heavy metals. IOP Earth Environ Sci, 106, 012020.

³⁶⁰ Rangsayatorn, N., Pokethitiyook, P., Upatham, E. S., & Lanza, G. R. (2004). Cadmium biosorption by Spirulina platensis in free and immobilized systems. Journal of Hazardous Materials, 113(1–3), 141–148.

³⁶¹ Deng, X. P., Gao, Z., & Xu, Z. (2013). Spirulina platensis enhances lead adsorption and reduces toxicity in vitro and in vivo. Applied Biochemistry and Biotechnology, 171, 234–245.

³⁶² Wang, J., & Chen, C. (2009). Biosorption of arsenic(V) by Spirulina biomass. Water Research, 43(2), 372–378.

³⁶³ Yadavalli, R., & Anand, V. (2017). Binding affinity of Spirulina protein fractions for mercury and cadmium. International Journal of Biological Macromolecules, 104, 125–132.

³⁶⁴ El-Baky, H. A., et al. (2009). Efficiency of Spirulina in removing aluminum and oxidative toxicity. Journal of Environmental Science, 21(6), 884–891.

³⁶⁵ Li, Y., Chen, Z., & Wang, L. (2010). Fulvic acid interactions with lead and cadmium: Adsorption, desorption, and complex stability. Chemosphere, 78, 141–147.

³⁶⁶ Stevenson, F. J. (1994). Humus Chemistry: Genesis, Composition, Reactions (2nd ed.). Wiley.

³⁶⁷ Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Binding and redox cycling of arsenic in fulvic acid–soil complexes. Environmental Science & Technology, 41, 8152–8158.

³⁶⁸ Perminova, I. V., et al. (2005). Complexation of nickel and cadmium by fulvic acids: Stability constants and binding kinetics. Environmental Science & Technology, 39, 8511–8518.

³⁶⁹ Tan, W., & Wang, M. (2012). Humic acid as a multi-metal chelator: Lead, cadmium, and aluminum affinity in vitro. Journal of Environmental Management, 99, 72–80.

³⁷⁰ Senesi, N., Dobrzynski, T., & Weber, J. (2001). Metal–humic interactions: Mechanisms of mercury and nickel binding. Environmental Pollution, 114, 377–384.

³⁷¹ Kłosińska, M., et al. (2014). Humic substances reduce oxidative and metal toxicity during chelation. Chemosphere, 111, 156–162.
³⁷² Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68.

³⁷³ O’Leary, F., & Samman, S. (2010). Vitamin B12 in health and disease. Nutrients, 2(3), 299–316.


³⁷⁴ Stover, P. J. (2009). Folate biochemical pathways and their regulation. Nature Reviews Genetics, 10(5), 295–306.


³⁷⁵ Gröber, U., Schmidt, J., & Kisters, K. (2015). Micronutrients in prevention and therapy of chronic disease. Nutrients, 7(1), 353–379.


³⁷⁶ Ames, B. N. (2018). Prolonging healthy aging: Longevity vitamins and micronutrient triage. Proceedings of the National Academy of Sciences, 115(43), 10836–10844.


³⁷⁷ Genuis, S. J., & Schwalfenberg, G. K. (2021). The critical role of minerals and trace elements in human health and disease: Implications for clinical practice. Environmental Research, 195, 110856.


³⁷⁸ Mocchegiani, E., Malavolta, M., & Costarelli, L. (2013). Zinc, metallothioneins, and longevity: Interrelationships with selenium and glutathione. Molecular Medicine, 19(1), 1–17.


³⁷⁹ Padayatty, S. J., & Levine, M. (2016). Vitamin C: Physiology, dietary sources, and requirements. Nutrients, 8(12), 868.

³⁸⁰ Pizzorno, J., Gluck, F., & Jokubaitis, L. (2014). Glutathione: A key player in detoxification and heavy metal metabolism. Integrative Medicine, 13(1), 8–12.

³⁸¹ Calder, P. C. (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105–1115.

³⁸² Abenavoli, L., Capasso, R., Milic, N., & Capasso, F. (2010). Milk thistle in liver diseases: Past, present, future. Phytotherapy Research, 24(10), 1423–1432.

³⁸³ Clare, B. A., Conroy, R. S., & Spelman, K. (2009). The diuretic effect of Taraxacum officinale (dandelion) leaf extract in human subjects. Journal of Alternative and Complementary Medicine, 15(8), 929–934.

³⁸⁴ Ianiro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut, 65(11), 1906–1915.

³⁸⁵ Rochette, L., Ghibu, S., Richard, C., Zeller, M., Cottin, Y., & Vergely, C. (2013). Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Molecular Nutrition & Food Research, 57(1), 114–125.

³⁸⁶ Aaseth, J., Skaug, M. A., Cao, Y., & Andersen, O. (2015). Chelation in metal intoxication—Principles and paradigms. Journal of Trace Elements in Medicine and Biology, 31, 260–266.

³⁸⁷ Aremu, D. A., Madejón, P., & Madejón, E. (2021). Dimercaptopropane sulfonate (DMPS) as a chelating agent for mercury intoxication: Mechanisms and clinical applications. Environmental Science and Pollution Research, 28(23), 29412–29424.

³⁸⁸ Flora, S. J. S., Pachauri, V., Saxena, G., & Mehta, A. (2009). Arsenic, cadmium and lead: Reproductive health effects and EDTA therapy. Reproductive Toxicology, 28(3), 273–284.

³⁸⁹ Park, J. H., Choi, J. H., & Lee, J. H. (2019). Chelation and detoxification effects of Coriandrum sativum (cilantro) extract against heavy metal toxicity. Biological Trace Element Research, 187(2), 457–464.

³⁹⁰ Pavelic, K., Hadzija, M., Bedrica, L., Pavelic, J., Dikic, I., Katic, M., Kralj, M., Bosnar, M., Kapitanovic, S., Poljak-Blazi, M., & Krizanac, S. (2001). Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. Journal of Molecular Medicine, 78(12), 708–720.

³⁹¹ Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science & Technology, 45(8), 3768–3773.

³⁹² Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27.

³⁹³ Azémar, M., Hildenbrand, B., Haering, B., Heim, M. E., & Unger, C. (2007). Clinical experience with Modified Citrus Pectin in cancer patients. Integrative Cancer Therapies, 6(2), 123–129.

³⁹⁴ Neuvonen, P. J., & Olkkola, K. T. (1988). Oral activated charcoal in the treatment of intoxications: A review. Journal of Internal Medicine, 224(3), 211–218.

³⁹⁵ Queiroz, M. L. S., Filho, O. M. R., & Bincoletto, C. (1998). Chlorella vulgaris modulates immunologic responses in mice exposed to lead. Pharmacology & Toxicology, 83(1), 1–7.

³⁹⁶ Lu, J., Wang, Z., Zhou, J., & Wei, Z. (2011). Detoxification of arsenic by Spirulina platensis in arsenic-exposed mice. Journal of Applied Phycology, 23(2), 241–246.

³⁹⁷ Winkler, J., & Ghosh, S. (2018). Therapeutic potential of fulvic acid in chronic inflammatory diseases and heavy metal toxicity. Journal of Inflammation Research, 11, 373–384.

³⁹⁸ Islam, K. M. S., Schuhmacher, A., & Gropp, J. M. (2005). Humic acid substances in animal agriculture. Pakistan Journal of Nutrition, 4(3), 126–134.